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Nuclear RNAs emerge as important factors to orchestrate the dynamic organization of the nucleus into
functional subcompartments. By tethering RNAs to distinct genomic loci, RNA-dependent chromatin
changes can be dissected by fluorescence microscopic analysis. Here we describe how this approach is
implemented in mammalian cells. It involves two high-affinity protein-nucleic acid interactions that
can be established with a number of different protein domains and DNA and RNA sequences. A prototypic
system is described here in detail: It consists of the binding of MS2 bacteriophage coat protein to its RNA
recognition sequence and the interaction between the bacterial LacI repressor protein to its target lacO
operator DNA sequence. Via these interactions RNAs tagged with the MS2 recognition sequences can
be recruited to a locus with integrated lacO repeats. By inducing RNA-chromatin binding a number of
RNA-dependent activities can be dissected: (i) The RNA-induced compaction or decondensation of chro-
matin, (ii) identification of RNA-interacting chromatin modifiers that set epigenetic signals such as post-
translational histone modifications, and (iii) nuclear relocation of a genomic locus targeted by the
tethered RNA. Thus, a variety of RNA-dependent activities can be evaluated with the MS2-LacI system,
which are crucial for understanding how RNA shapes nuclear organization.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

RNA production is regulated via the composition and spatial
organization of chromatin and its nuclear environment. At the
same time the proteins encoded by these RNAs as well as RNA
transcripts themselves feed back on nuclear organization and gen-
ome function [1–4]. As such, they play important roles for the orga-
nization of nuclear subcompartments [5,6], for chromatin state
changes [7–11], and for regulating gene expression [1,3,12,13]. A
wide range of mechanisms has been proposed on how nuclear
RNAs exert these activities [14]: RNAs might act as (i) a scaffold
for higher order chromatin organizing ribonucleoprotein com-
plexes [15–21], (ii) targeting factors of chromatin modifying com-
plexes to genomic loci and to regulate their enzymatic activities
[22–24], (iii) decoys that titrate away DNA-binding proteins
[25,26], (iv) architectural factors mediating chromatin folding
[12], or (v) nucleation sites for the biogenesis of various nuclear
bodies [27–31].
In order to functionally characterize nuclear RNAs in single liv-
ing cells as well as in situ after fixation, fluorescence microscopy
based approaches are the method of choice. The sequence specific
tagging and fluorescent labeling of RNA can be accomplished by
engineering a high affinity protein binding sequence in one or
more copies into the RNA of interest. A frequently applied pair of
RNA sequence and RNA-binding protein is the bacteriophage
MS2 stem loop sequence fused to an RNA of interest (MS2-RNA),
which is recognized and bound by the MS2 bacteriophage coat pro-
tein (MS2-BCP) [6,32]. This system has extensively been exploited
for investigating RNA in living cells [33–41]. In addition to MS2-
BCP other high affinity RNA-binding proteins can be used together
with their corresponding RNA recognition sequences, which might
offer advantages for specific applications [42,43]. These include the
bacteriophage lambda N protein [34,44,45], the Tat (trans-
activator) peptide from the bovine immunodeficiency virus [46]
or the bacteriophage PP7 coat protein [47,48].

To recruit the MS2-RNA to a specific chromatin locus and to
examine its effect on the local chromatin environment a second
high affinity interaction is exploited. It typically involves a stable
integration of bacterial operator repeats into the genome, to which
a bacterial repressor binds with high affinity. In the present work,
we focus on the combination of E. coli lac repressor (LacI) binding
to its lacO operator sequence [49,50]. Equivalent pairs that allow
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tagging of genomic loci are tet repressor (TetR) and tetO operator
sequences [51], LexA protein binding to the lexA sequence
[52,53] as well as ParB protein together with the parS recognition
sequence [54–56]. By tagging the repressor proteins with fluores-
cent proteins such as GFP, these experimental systems have been
used for a variety of studies. The previous work for example
addressed the movements of chromatin loci in living cells [57–
60], the decondensation and acetylation of chromatin after recruit-
ment of the transcriptional activator VP16 [61], the condensation
and methylation of chromatin after recruitment of heterochro-
matin protein 1 (HP1) [62], the dynamics of gene expression
[38], and protein-protein interactions in the nuclei of mammalian
cells by recruiting proteins of interest to chromatin [63,64].

Here, we describe the use of the LacI-lacO system to recruit
MS2-RNAs to chromatin. The methods can be easily adapted to
the alternative RNA-binding proteins/RNA sequences (lambda N
protein, Tat peptide, PP7) and genomic targeting interactions
(TetR-tetO, LexA-lexA, ParB-parS) mentioned above. In a corre-
sponding manner, endogenous loci can be tagged with transcrip-
tion activator-like effector (TALE)-based strategies [65,66] or the
CRISPR/dCas9 system with an endonuclease-deficient Cas9 protein
[67,68]. For experimental data acquisition the experiments
described here use imaging by confocal fluorescence laser scanning
microscopy (CLSM) as readout. However, it is noted that the
method of MS2 tagging of RNA is compatible with a variety of flu-
orescence imaging modalities [69]. It is applicable to studies of var-
ious activities, by which RNA affects chromatin and nuclear
organization. These comprise RNA-mediated changes of chromatin
compaction, chromatin composition and modification as well as
the sub-nuclear localization of a genomic locus. Thus, the approach
is remarkably versatile to dissect the role of RNA for nuclear orga-
nization by fluorescence microscopy based methods of in living or
fixed cells.
2. Overview of the method

2.1. The MS2-LacI recruitment system

Naturally, the lacO sequence is part of the E. coli lac operon that
regulates the bacterial lactose transport and metabolism. The lacO
DNA sequence is bound by LacI repressor protein with high affinity
and specificity even when this sequence is part of an in vitro recon-
stituted nucleosome without displacing the histone octamer
[70,71]. Because of its particularly high specific binding affinity
the combination of LacI repressor and lacO binding sites can be
exploited to recruit defined proteins to chromatin by coupling
them to LacI [72–74]. Repeats of lacO sequences are stably inte-
grated into eukaryotic genomes to provide an array of chromoso-
mal binding sites for the LacI fusion protein [59,73,74] (Fig. 1A).
The three cell lines used in the methods and experiments described
here (EC4, F4 2B8, AO3) have a single integration site of the lacO
repeat array. Transfecting these cells with LacI fused to a fluores-
cent protein allows tracing the integrated lacO locus by fluores-
cence microscopy. To tether RNA to the lacO arrays, the MS2-BCP
is fused with GFP and LacI to yield the MS2-BCP-GFP-LacI construct
(Fig. 1A). The RNA of interest is tagged with several MS2 stem loop
sequences to enhance the interactions. In the experiments
described here constructs with 18 MS2 loops were used. Since
repetitive sequences are prone to loss during plasmid amplification
this needs to be accounted for by selecting appropriate E. coli
strains (see protocol in Section 3.2). MS2-BCP binds as a dimer to
the MS2-loops with high affinity [32] and a MS2-BCP dimer fusion
sequence can be used to create preformed MS2-BCP dimers [75].
Via binding of MS2-BCP-GFP-LacI at the lacO array the interacting
MS2-RNA is enriched at this locus and its influence on the chro-
matin environment is studied. The applications of the MS2-LacI
system described here include the following assays: (i) RNA
induced chromatin compaction (Fig. 1B). As described previously,
RNA is a crucial factor to control the chromatin compaction state
[4,7]. (ii) Analysis of RNA-dependent chromatin protein content
and epigenetic signals as for example histone modifications. The
interacting proteins can be detected in fluorescence two-color
experiments with a given RNA-binding protein (RBP) fused for
example to red fluorescent protein (RFP) or via immunofluores-
cence against a protein or its post-translational modifications
(Fig. 1C). (iii) Sub-nuclear localization changes upon RNA tethering
of a genomic locus (Fig. 1D). An example for this type of activity is
the repositionig of the lacO array in relation to nucleoli that has
been described recently [11].

2.2. Generation of cell lines with stably integrated lacO arrays

Several laboratories have generated mammalian cell lines with
stable integrations of lacO and/or tetO operator sequence arrays. A
non-comprehensive overview of these cell lines is given in Table 1.
Protocols for the construction of these cell lines are given in the
respective publications and published protocols [52,76] and in Sec-
tion 3.1 below. They are based on the following strategy: Plasmids
carrying arrays of the specific sequences and a selection marker are
integrated into the genomes of the target cell lines. The cell lines
can be distinct with respect to the chromosomal integration loci,
the integration sizes and the number of integration sites per cell
(Fig. 2, Table 1). The number of integrations can be determined
using Southern hybridization of genomic DNA after restriction
enzyme digestion using a restriction site that is unique in the vec-
tor carrying the lacO sequence. Fluorescent in situ hybridization
(FISH) of metaphase chromosomes serves to identify the localiza-
tion of the integration [38,57,60,62,77,78]. The insertion loci can
be visualized in stable clones by transiently transfecting the cells
with a construct coding for the LacI fused to GFP or mRFP. In the
experiments with human cell lines described here, the U2OS cell
lines EC4 (Fig. 2B, lacO repeat next to a telomere at chromosome
3p) and F4 2B8 (Fig. 2D, lacO repeat next to a centromere at chro-
mosome 2q) were used. In addition, another single integration
clone (FB4, Fig. 2A), a cell line with three chromosomes with lacO
integration (F6B2, Fig. 2E) and one with a combination of lacO
and tetO tagged chromosomes (BiC3, Fig. 2F) are depicted. The lacO
integrations were generated using the plasmid pLAU43 containing
240 copies of the lac operator [79] as described in the detailed pro-
tocol 3.1 below. To identify the precise genomic location of the
integrated lacO arrays, multicolor FISH to identify the chromo-
somes and FISH against the lacO sequences was applied. The third
lacO array-containing cell line used here was the AO3 cell line,
which was generated by Belmont and co-workers [73,74]. It is
based on the DG44 CHO cell line with a deletion of the dihydrofo-
late reductase (DHFR) locus [80] transfected with the pSV2-DHFR-
8.32 plasmid containing the lacO sequence. DHFR was used as a
marker for selection of stable transformants.

2.3. Detecting RNA at the lacO array

In order to observe RNAs after recruitment to the lacO arrays,
the RNA molecules need to be labeled. The fusion MS2-BCP with
an auto-fluorescent domain (e.g. GFP, RFP) provides an RNA label
(Fig. 1A) that has been also previously exploited for tracing RNA
[33–37]. However, when evaluating an MS2-BCP-GFP-LacI con-
struct enriched at a lacO repeat, it cannot be inferred to which
extend the GFP-signal reflects RNA molecules bound to the MS2-
BCP domain. Accordingly, an additional test needs to be conducted
to assess the enrichment of RNA via the chromatin-tethering con-
struct. To visualize RNA, a number of RNA aptamers have been
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Table 1
Mammalian cell lines with lacO and/or tetO array integrations.

Clone Insertion Chromosomal location Parent cell line Species References

U2OS 2-6-3 lacO, tetO, CMV promoter, MS2-RNA n.d. U2OS Human [38]
EC4 lacO 3p, Telomere U2OS (HTB-96) Human [59]
FB4 lacO 3p Telomere U2OS (HTB-96) Human [114]
FC2 lacO 11q, Telomere U2OS (HTB-96) Human [114]
F4 1B4 lacO 21p, Telomere U2OS (HTB-96) Human [114]
F4 2B8 lacO 2q, Centromere U2OS (HTB-96) Human [59]
F4 2C8 lacO 14p, Telomere U2OS (HTB-96) Human [114]
F6B2 lacO 6q, 11q, 12q U2OS (HTB-96) Human [63]
BiC3 lacO, tetO lacO: 6q, 11q, 12q; tetO: n.d. U2OS (HTB-96) Human [114]
N/A lacO 13q22, 5p14, 3q26.2, 13p, or 1q11 HT-1080 Human [57]
N/A lacO Chr. 7 HeLa Human [115]
N/A lacO, tetO, CMV promoter, MS2-RNA n.d. C2C12 myoblasts Mouse [5]
NIH2/4 lacO, tetO, ISceI restriction site n.d. NIH 3T3 Mouse [60]
AO3 lacO n.d. CHO DG44 cell line with DHFR double knockout Hamster [77]
RRE-B1 lacO n.d. CHO DG44 cell line with DHFR double knockout Hamster [62]

The table shows an incomplete overview of mammalian cell lines with integrated lacO and tetO arrays.
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identified, which bind molecules that only fluoresce when in com-
plex with the RNA [81,82]. Alternatively, stem-loop shaped anti-
sense oligonucleotides, so-called molecular beacon probes, can be
used. These have an internally quenched fluorophore, whose fluo-
rescence is restored upon RNA hybridization to the probe. These
methods and their derivatives, however, might be prone to ineffi-
cient delivery and low stability of the probes in some cellular sys-
tems [83].

For labeling of the MS2-RNA after recruitment to the lacO arrays
and fixation of the cells, we typically apply two methods (Fig. 1C,
Fig. 3). The first approach involves the incorporation of ethynyl-
uridine (EU) into RNA for direct labeling (see protocol in Sec-
tion 3.4). This compound can be added to the cell culture medium
and is readily incorporated into all newly synthesized RNAs. After
fixation of the cells, the transcripts with incorporated EU are made
visible by attaching a fluorophore to the EU moiety using an azide-
alkyne cycloaddition reaction referred to as ‘click’ reaction [84].
Detection of RNA at the arrays is based on the assumption that
the enrichment at the arrays is strong enough to distinguish it from
the nuclear background, where nascent RNAs are constantly being
produced. An alternative, more specific, approach is RNA fluores-
cence in situ hybridization (RNA-FISH) directed against either the
MS2 stem loop sequence [85] or directly against the sequence of
the RNA of interest (Fig. 1C, see Section 3.5 for a detailed protocol).
For our quantitative analysis, we favor RNA-FISH directed against
the MS2-stem loop sequences to ensure that the lacO array not
only carries the MS2-BCP-GFP-LacI but also the MS2-RNA.

2.4. RNA-dependent chromatin compaction

The chromatin condensation state [86] has often been linked to
its biological activity [87,88]. While silenced heterochromatin is
more condensed, open and loosely packaged chromatin is thought
to be more accessible for the transcription machinery as discussed
in Ref. [89]. Transcriptional activity, on the other hand, can be reg-
ulated by RNAs that recruit, activate or inhibit chromatin modifiers
[14]. In a previous study, it was shown that the lacO arrays inte-
grated in a mammalian genome can be subjected to higher order
chromatin unfolding in response to tethering a DNA-binding pro-
tein involved in nucleotide excision repair after UV-induced DNA
damage [78]. It was concluded that the size of the array correlates
with the compaction state of chromatin. The MS2-LacI recruitment
system could thus also be used to investigate the compaction state
of the lacO arrays in dependence of the RNA that is tethered to
them (Fig. 1B).

In our previous work we found that a nuclear RNA fraction
enriched in long 30-UTR sequences maintains higher order chro-
matin in an open configuration [7]. Furthermore, 30-UTRs also
appear to have nuclear functions in addition to regulating mRNA
stability, localization and translation. A large number of 30-UTRs
in human, mouse and fly are expressed independently from their
associated protein-coding sequences, to which they are normally
linked [90,91]. Furthermore, a systematic analysis of known long
non-coding RNAs (lncRNAs) revealed similarities between 30-
UTRs and lncRNAs in terms of structural features and sequence
composition [92]. To elucidate the nuclear activities of 30-UTRs
with respect to chromatin organization, the MS2-LacI-mediated
recruitment system can be applied. This is demonstrated below
in Section 4.2 and Fig. 4.

2.5. RNA-induced changes of chromatin content and epigenetic
modifications

As discussed previously, chromatin is decorated with RNA. In
addition, many chromatin-modifying enzymes bind to RNA, which
could be essential for their targeting to specific genomic loci [4].
The MS2-LacI-mediated recruitment system is a well-suited sys-
tem to study these aspects. It serves to recruit and immobilize
specific RNAs on a defined chromatin locus in order to observe
the subsequent enrichment of proteins at this locus. To readout
the identity of these factors they can be overexpressed as a fusion
protein with a fluorescent tag. Alternatively, one can perform
immunofluorescent staining of protein candidates after fixing the
cells (Fig. 1C). As an example, the Polycomb repressive complex 2
(PRC2) is investigated here with respect to RNA-dependent chro-
matin changes [93,94] (Section 4.3, Fig. 5). PRC2 has been
described to modulate chromatin compaction state when in com-
plex with EZH2 (enhancer of zeste homolog 2) [95–97]. The latter
enzyme trimethylates histone H3 on lysine 27 (H3K27me3) [98].
Both EZH2 and SUZ12 (suppressor of zeste 12 homolog), a compo-
nent of PRC2, have been shown to bind RNA [20,99–104], which
makes PRC2 interesting in the context of investigating RNA medi-
ated changes on chromatin with the MS2-LacI-mediated recruit-
ment system. As an example for a PRC2-interacting RNA the
RepA transcript is used, which has been extensively studied in
the context of X chromosome inactivation in female mammalian
cells. This 250 nucleotides long RNA originates from the first exon
of the X inactivation specific transcript (XIST) and contains the so
called A repeats, which form a very specific stem loop structure
and are essential for XIST-mediated chromosome silencing
[105,106]. The coordinated expression of this transcript regulates
the recruitment of chromatin modifying factors that eventually
render one of the X chromosomes in female mammalian cells inac-
tive. The current model supports the view that PRC2 contacts RepA
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via the EZH2 and SUZ12 subunits. This recruitment takes place co-
transcriptionally and leads to PRC2 loading onto chromatin [107].
The MS2-LacI system provides a means of directly testing whether
the RepA transcript can recruit EZH2 to chromatin in living cells
(Section 4.3, Fig. 5). Furthermore it can be applied to investigate
if a given RNA carries the activity to induce setting of the
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H3K27me3 modification at the lacO array (Section 4.4, Fig. 6). Sim-
ilar to investigating the protein content of chromatin at the arrays,
immunofluorescent staining is used to detect changes in the post-
translational changes of the histones at the lacO arrays.

2.6. RNA-targeted sub-nuclear relocalization of genomic loci

The nucleus of mammalian cells is a heterogeneous environ-
ment with RNA as an important factor for nuclear architecture
[4]. As described previously, specific RNA transcripts can trigger
the nucleation of certain nuclear bodies [27–31]. Another impor-
tant determinant of chromatin function is the localization of a
given locus relative to other nuclear subcompartments. Interest-
ingly, in a recent study we observed that the recruitment of Alu
element-containing RNA transcripts increased the proportion of
lacO arrays that were localized to the nucleolus [11], a nuclear
organelle that can adapt its structure and transcriptional activity
to the needs of the cell. Thus, the MS2-LacI-mediated recruitment
system can also be applied to visualize RNA-dependent changes in
the sub-nuclear localization of the loci. This example will be
explained in more details in the Experimental examples Section be-
low (Fig. 1D, Section 4.5, Fig. 7).
3. Detailed protocols

3.1. Generation of cell lines with stably integrated lacO arrays

Cell lines with stably integrated lacO arrays were obtained by
co-transfection with a plasmid containing 240 repeats of lac
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containing RNA transcripts promote nucleolar localization when tethered to the
lacO locus in the U2OS F4 2B8 cell with a single stably integrated lacO array (figure
adapted from Ref. [11]). (A) CLSM images of U2OS cells transfected with MS2-
aluRNAR (right arm of the aluRNA). They reveal the localization of MS2-BCP-GFP-
LacI (green in merged image) and NCL (immunofluorescence, red in the merged
image). Note: the aluRNA induces the enrichment of NCL at the lacO locus. The
arrow indicates the lacO array, which is associated with a nucleolar domain. Scale
bars: 10 mm. (B) Same as in panel A but with NPM (immunofluorescence, red in the
merged image). (C) MS2-loop-containing forward aluRNA, aluRNAL(left arm of the
aluRNA), or aluRNAR were recruited to the lacO array. The propensity for nucleolar
localization was evaluated as the average number of lacO arrays with tethered RNA
detected in nucleoli (±95% CI) and is plotted in the bar chart. Calculations are based
on analysis of more than 100 cells. **p < 0.01, t-test, from the analysis of two
independent biological replicates. As controls, no RNA, transcripts of the MS2 loop-
containing RNA only and control MS2-tagged transcripts (CDV3, RepA, STARD7 and
CORO1C) were used.
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operator sequence (pLAU 43, kindly provided by David Sherrat,
Oxford) [108] together with a neomycin resistance coding vector
(pcDNA3.1). Both vectors were linearized and mixed in a 1:5 or
1:10 ratio. U2OS cells growing in a 12-well plate were then trans-
fected. After 24 h cells were trypsinized and transferred to a 12 cm
tissue culture dish. 750 lg/ml G418 was added after 24 additional
hours. The non-stably transfected cells died after 4–5 days and the
complete selection procedure lasted for 10 days. During the selec-
tion phase, the medium was exchanged daily in order to remove
the dead cells. About two to three weeks after beginning of the
selection, single colonies were visible. The colonies were 1–
1.5 mm in diameter and separated. 100–200 clones were picked
with a 10 ll pipette tip and transferred to a 48-well plate. After
one week, the surviving clones (30–50%) were trypsinized and
transferred to two wells of a 24 well-plate. One of the plates, con-
taining a glass coverslip in each well, was transiently transfected
with LacI-GFP in order to screen the clones after fixation. The cor-
responding positive clones were grown from the other 24-well
plate. Detailed protocols of how other laboratories generated cell
lines can be found in a number of publications [38,52,57,60–62,7
3,74,76–78,108].
Cell culturing of lacO containing cell lines followed standard
conditions. The EC4 and F4 2B8 U2OS cell lines were cultured in
DMEM medium supplemented with 2 mM L-Glutamine, 10% FCS
and 1% penicillin/streptomycin (v/v). The AO3 cells were grown
in DMEM/F-12 medium supplemented with 2 mM fresh L-
Glutamine, 20% FCS and 1% penicillin/streptomycin (v/v). All cells
were grown at 37 �C in 5% CO2.
3.2. Molecular cloning

All RNAs sequences were expressed from a pcDNA3.1 vector
containing the MS2 stem loop sequences (pcDNA3.1-MS2) [109].
They were amplified by PCR using the Q5 polymerase and primers
containing the Not I restriction site. Total HeLa cDNA was used as
templates for PCR. PCR-products were purified using the Wizard
SV Gel and PCR Clean-Up System (Promega, Germany). Restriction
digestion of both insert and target vector were carried out using
FastDigest enzymes (Thermo Fisher Scientific, USA). Phosphate
residues of the vector were removed by Fast-AP phosphatase
(Thermo Fisher Scientific, USA) for 30 min at 37 �C. Both inserts
and vector fragments were purified by agarose gel extraction and
ligated using the T4 DNA ligase (New England Biolabs). To amplify
the ligated products, they were transformed into E. coli SURE 2
competent cells (Strategene, USA), which were grown in LB med-
ium supplemented with ampicillin at a concentration of 100 lg/
ml at 30 �C overnight. Rapid amplification of the pcDNA3.1-MS2
plasmid in E. coli strains like DH5a can lead to loss of some of
the MS2 stem loop sequences. To maintain the full number of
MS2 repeats, we recommend using the SURE 2 strain, which is
recombination (recB recJ) deficient, and to grow them at 30 �C
instead of 37 �C. Plasmids were then isolated using the nucleospin
plasmid purification kit (Macherey Nagel, Germany) and verified
by sequencing. All kits and enzymes were used according to the
manufacturer’s instructions. Plasmid amplification of pSV2-MS2-
BCP-GFP-LacI [11] was carried out in DH5a competent bacteria
in kanamycin (50 lg/ml) containing LB-ampicillin medium at
37 �C overnight and purified as described above.
3.3. Transient transfections

Transient transfection of plasmids into cells was conducted
with Lipofectamine 2000 (Thermo Fisher Scientific, USA) according
to the manufacturer’s instructions. Briefly, cells were seeded 24 h
prior to transfection to reach a confluence of 80–90% at the time
point of transfection. The penicillin/streptomycin-containing med-
ium was replaced by antibiotic-free medium. Plasmid DNA and
lipofectamine were separately diluted in Opti-MEM (Thermo
Fisher Scientific, USA) and were mixed, stirred rigorously and incu-
bated at room-temperature for 20 min. Lipofectamine-DNA com-
plexes were then added to the cells. The transfection mixes were
removed from the cells 6–8 h after transfection and replaced with
antibiotic-containing medium. Cells were fixed 24 h after transfec-
tion. Plasmids encoding the MS2 loop-containing RNAs and the
plasmids encoding the MS2-GFP-LacI fusion protein were trans-
fected at equal amounts. For microscopy cells were processed as
described, but seeded on microscopy coverslips.
3.4. Ethynyl uridine labeling of RNA

To label RNAs with 5-ethynyl uridine (EU), cells were incubated
with 1 mM EU overnight and fixed with 4% paraformaldehyde/PBS.
EU-labeled transcripts were detected using Alexa Fluor 565 azide
according to the Click-it RNA imaging Kit (Thermo Fisher Scientific,
USA) and following the manufacturer instructions.
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3.5. RNA fluorescence in situ hybridization

1. For RNA-FISH against the MS2 stem loops, cells were grown on
coverslips and permeabilized in CSK buffer for 5 min on ice
(100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES
pH 6.8, 0.5% Triton X 100) containing 10 mM vanadyl ribonucle-
oside complex (VRC, New England Biolabs, Germany) or 50 mg/
ml RNase A (see notes below).

2. Cells were subsequently fixed with 4% paraformaldehyde/PBS
for 15 min at room temperature.

3. Cells were dehydrated by sequential washes with ethanol (70%,
85%, and 100%) for 3 min each at room temperature and finally
air-dried.

4. The slides were mounted upside down on a 5 ml drop of
hybridization mix (see notes below) and sealed with rubber
cement (Fixogum, Marabu) to avoid evaporation.

5. The probe was hybridized overnight in hybridization buffer at
37 �C in a humid hybridization chamber.

6. The next day, the slides were washed twice with 2X SSC, 50%
formamide at room temperature for 15 min, once with 0.2X
SSC, 0.1% Tween at 40 �C for 10 min and once with 2X SSC at
room temperature for 5 min.

7. The slides were washed again in PBS for 5 min at room
temperature.

8. Finally, the slides were incubate with 1� DAPI solution (Sigma-
Aldrich, Germany) and washed again in PBS and water.

9. The slides were mounted and fixed in mowiol mounting med-
ium (see notes below) on microscopy slides (Menzel-Gläser,
Germany).

Notes:

� The RNase A control is needed to ensure that the RNA FISH
probes hybridize to RNA and not to DNA with the same
sequence.

� Preparation of the hybridization mix: Per slide, 50 ng of the 50–
Atto-565-labeled antisense probe that has been used in Ref. [85]
with the sequence 50–GTC GAC CTG CAG ACA TGG GTG ATC CTC
ATG TTT TCT AGG CAA TTA–30 was mixed with 10 mg salmon
sperm DNA and 5 ml formamide. The mixture was heated to
37 �C for 10 min and 74 �C for 7 min before 5 ml hybridization
buffer (30% dextran sulfate, 2 mg/mL BSA, 4� SSC) containing
either 10 mM VRC or 50 mg/ml RNase A were added to the
slides.

� Mowiol mounting medium preparation: 6 g of mowiol 4–88
(Sigma–Aldrich, USA), 6 g of glycerol and 6 mL of H2O were
mixed and stirred for 3–4 h at room temperature (the solution
becomes highly viscous with time). 12 ml 0.2 M Tris-HCl pH
8.5 were added and the mixture was placed on a heating plate
at 50 �C for 10 min with continuous stirring. After the mowiol
dissolved, it was centrifuged at 5000g for 15 min. Aliquots were
stored at �20 �C.

3.6. Immunofluorescence

For immunofluorescence in combination with RNA FISH, cells
were processed as follows.

1. Cells were grown on coverslips and permeabilized in CSK
buffer for 5 min on ice (100 mM NaCl, 300 mM sucrose,
3 mM MgCl2, 10 mM PIPES pH 6.8, 0.5% Triton X-100) con-
taining 10 mM vanadyl ribonucleoside complex (VRC, New
England Biolabs, Germany) or 50 mg/ml RNase A (see notes
above).

2. Cells were fixed with 4% paraformaldehyde/PBS for 15 min
at room temperature.
3. The cells were then permeabilized for 5 min in ice-cold 0.5%
Triton X-100/PBS (v/v).

4. Cells were washed three times for 5 min in PBS at room
temperature.

5. They were blocked with 10% goat serum/PBS at room tem-
perature for 30 min.

6. The slides were incubated for at least 1 h at room tempera-
ture with the first antibody (see notes below).

7. To remove excessive primary antibody, cells were washed
three times 5 min with 0.02% NP40/PBS (v/v) at room
temperature.

8. The secondary antibody was incubated at room temperature
for 30 min.

9. Slides were washed three times 5 min in PBS at room
temperature.

10. If further processed for RNA FISH, the slides were again fixed
in 4% paraformaldehyde/PBS for 15 minutes at room tem-
perature. The RNA-FISH protocol was conducted as
described above.

Notes:

� Primary antibodies specific to the protein of interest (EZH2:
Active Motif, #39875, H3K27me3: Active Motif, #39535, nucle-
olin (NCL): Santa Cruz Biotechnology, #sc-13057, nucleophos-
min (NPM): Santa Cruz Biotechnology, #sc-56622) were
diluted in the blocking solution.

� Appropriate secondary antibodies conjugated with fluorescent
dyes were also diluted in the blocking solution (goat anti-
mouse IgG (H + L) secondary antibody, Alexa Fluor 633 conju-
gate, Thermo Fisher Scientific, A-21052 and goat anti-rabbit
IgG (H + L) secondary antibody, Alexa Fluor 633 conjugate,
Thermo Fisher Scientific, A-21070).

3.7. Fluorescence microscopy

Confocal imaging was done with a Leica TCS SP5 confocal laser-
scanning microscope equipped with a HCX PL APO lambda blue
63�/1.4 NA oil immersion objective (Leica Microsystems CMS
GmbH, Mannheim, Germany). A near UV diode, diode-pumped
solid-state, argon and helium-neon lasers were used for DAPI
(k = 405 nm), Alexa 488 or GFP (k = 488 nm), Alexa 568
(k = 561 nm) or Atto-565 and Alexa 633 (k = 633 nm) excitation.
For multi-color analysis sequential image acquisition was applied.
The emission detection ranges were adjusted to minimize crosstalk
between the different channels. The detection pinhole had a diam-
eter corresponding to one airy disk.

3.8. Image analysis

ImageJ [110] was used for the analysis of microscopy pictures
from single images or the maximum intensity projections of image
stacks. For measurement of the particles size, images were seg-
mented via thresholding and the function ‘‘Analyze Particles”
was used to automatically determine the size of the lacO arrays.
To measure protein enrichment at the lacO arrays, the fluorescent
signal of the MS2-BCP-GFP-LacI protein was first used to identify
the position of the arrays. The mean intensity values of the
immunofluorescent staining against each protein of interest were
then evaluated and the enrichment over the background signal in
the nucleus of the same cell was calculated. In both cases only cells
that showed a positive signal for the MS2-stem loops RNA-FISH at
the arrays were taken into consideration.

To determine the relative position of the lacO arrays and the
nucleolus compartment, both were fluorescently labeled and their
signals were overlaid in ImageJ to analyze co-localization. The lacO
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arrays were localized via the fluorescence signal of GBP-LacI-RFP.
The nucleoli were localized by immunofluorescence of a nucleolar
marker such as nucleophosmin (NPM) or nucleolin (NCL) (the first
specific antibody was labeled via a secondary antibody conjugated
to Alexa 633, Thermo Fisher Scientific).
4. Experimental examples

4.1. RNA can be detected at lacO arrays using EU incorporation or
RNA-FISH

Labeling the RNA enriched at the array proved to be essential in
all experiments conducted with MS2-LacI system to ensure that
not only the MS2-BCP-GFP-LacI fusion protein but also the RNA
of interest was enriched. To test different methods of RNA labeling
at the lacO arrays, EC4 cells were transfected with the MS2-BCP-
GFP-LacI fusion protein and a plasmid encoding for an MS2 stem
loop-tagged RNA oligonucleotide of 60 nucleotides in length. At
6 h after transfection, EU was added to the medium of the trans-
fected cells at a concentration of 1 mM and was allowed to be
incorporated into newly synthesized RNAs overnight. At 24 h after
transfection the cells were fixed and incorporated EU was stained
using ‘click’ chemistry. Fig. 3A shows a cell, in which a clear enrich-
ment of the EU signal could be seen at the arrays, visualized by the
GFP-tagged LacI protein. In this experimental setup, EU is incorpo-
rated into all newly synthesized RNAs. Thus, although unlikely, the
signal from the EU labeled RNA at the array might not originate
solely from the MS2 stem loop-tagged RNA. Therefore, while incor-
poration of EU is easy to do and can be readily combined with
immunofluorescence, it is less specific than directly detecting the
MS2 stem loops-tagged RNA. Nonetheless, the enrichment of the
RNA at the array was strong enough to identify the array via its
EU-signal in comparison to the nuclear background signal. EU
incorporation and labeling by ‘‘click” chemistry is thus a suited
method to assess whether RNA is enriched at the lacO array when
recruiting it there via the MS2-LacI-mediated recruitment system.

The second method involves RNA fluorescence in situ hybridiza-
tion (RNA-FISH) with specific probes directed against the MS2
stem loop sequence. AO3 cells were transfected with the MS2-
BCP-GFP-LacI fusion protein and the same plasmid encoding for a
short MS2 stem loop-tagged RNA as above. Cells were fixed 24 h
after transfection and RNA-FISH with a fluorescently labeled probe
directed against the MS2 stem loop sequence was performed [85].
Alternatively, one could also make use of RNA-FISH probes directed
directly against the sequence part that is specific for the RNA of
interest. However, using probes against the MS2 stem loops is
more versatile as the same probes can be applied for all RNAs of
interest. Furthermore, the RNA is tagged with multiple MS2 stem
loops, which provides an amplification of the fluorescent signal
due to hybridization of several probes per transcript. Therefore,
using RNA-FISH with probes directed against the MS2 stem loops
was the method applied in all experiments described in the follow-
ing. To ensure that the sequence detected by RNA-FISH is in fact
the RNA sequence and not the DNA sequence of the plasmid, an
RNase A-treated control was included in the analysis. Since RNa-
se A cleaves all single stranded RNAs including the MS2 stem
loop-tagged RNA, no RNA-FISH signal was expected after RNase A
treatment. As depicted in Fig. 3B, an enrichment of the RNA-FISH
signal that co-localizes with the MS2-BCP-GFP-LacI fusion protein
could be seen (Fig. 3B, upper panel), whereas no RNA-FISH signal
was detected at the array after RNase A treatment (Fig. 3B, bottom
panel). Due to the high affinity of the MS2 stem loops for the MS2-
BCP immobilized at the array, most of the MS2-tagged RNA was
expected to be found at the array whereas very little should be dis-
tributed over the nucleus. Indeed, the background signal was very
low. Thus, RNA-FISH directed against the MS2 stem loop sequence
is a well-suited method to detect enrichment of the MS2-RNA at
genomic lacO sequences. This technique, however, requires some
caution in the experimental handling as described in the detailed
protocol provided in Section 3.5. Furthermore, due to incubation
with formamide-containing buffers, this method is not compatible
with every antibody used in subsequent immunofluorescent stain-
ings. Additionally, controls that have been treated with RNase A
have to be included to ensure that the probe only hybridized to
the RNA and not the plasmid DNA.

4.2. Specific RNAs immobilized at the lacO array induce changes in
chromatin compaction

To assess the ability of RNAs to change chromatin condensation
AO3 cells containing a stable insertion of the bacterial lacO repeat
sequence were transfected with a fusion protein of MS2-BCP-GFP-
LacI and the RNA of interest tagged with 18 MS2 stem loop
sequences. As exemplary RNA transcripts several 30-UTRs were
selected that were suggested to have putative chromatin organiz-
ing functions as described in a previous paper from our group
[7]. For these experiments AO3 cells were used since the lacO array
in this cell line is in a moderate condensation state. Accordingly, its
decondensation [78] but also a further compaction can be
observed. To detect RNA enrichment at the array, RNA–FISH with
fluorescently labeled probes directed against the MS2 stem loop
sequence was performed. The size of the arrays served as an indi-
cator for the degree of chromatin compaction. Cells transfected
with no RNA or with the MS2 stem loop sequence only were used
as controls.

Fig. 4A shows representative CLSM images of cells that were
transfected with no RNA, the MS2 stem loops attached to a short
oligonucleotide of 60 nucleotide and the MS2-tagged 30-UTR of
CDV3 (carnitine deficiency-associated gene expressed in ventricle
3). The corresponding samples treated with RNase A (bottom
panel) are also depicted demonstrating that the RNA-FISH only
specifically hybridized to the MS2 RNA and not to the plasmid
DNA. By visual inspection, it became clear that recruitment of
the 30-UTR of CDV3 decreased the size of the array. Recruiting just
the MS2 loops did not affect the size of the array. This observation
was substantiated by a quantitative analysis of the size of the
arrays and comparison to other 30-UTRs as displayed in Fig. 4B.
Only the 30-UTR of CDV3 but not those of SSR3 (signal sequence
seceptor, gamma), STARD7 (star-related lipid transfer (START)
domain containing 7) or CORO1C (coronin, actin binding protein,
1C) was able to significantly influence the degree of compaction
of the lacO arrays locus.

4.3. RNAs immobilized at the lacO array recruit EZH2 with low
specificity

Using the same experimental setup, we next examined whether
RNAs immobilized at the array could also recruit specific protein
interaction partners. As described above, EZH2 is a protein that
has been described to bind RNAs of various nature both in vitro
and in vivo [20,99–104,107]. Therefore it was used as an example
for a protein that would be recruited to chromatin in an RNA-
dependent manner. To do so, the same experimental setup as
described above was used with an additional immunostaining
directed against EZH2. The RepA transcript was tethered to the
lacO array as an example of an RNA transcript that has previously
been demonstrated to bind EZH2 [107]. As illustrated in Fig. 5A, all
RNAs investigated in the MS2-LacI mediated chromatin recruit-
ment system could enrich EZH2, even the MS2 stem loops with a
short oligonucleotide attached to them. A quantitative analysis of
the enrichment of EZH2 at the array was conducted (Fig. 5B) by
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measuring the enrichment of EZH2 staining intensity over the
background signal. This revealed an approximately 2-fold enrich-
ment of EZH2 in an RNA-dependent manner.

With this assay, it remains unclear whether EZH2 is the compo-
nent of the PRC2 complex that promotes the interaction with the
RNAs. Alternatively, the interaction could also be mediated by
one of the other PRC2 components that have RNA-binding capaci-
ties [107]. Nonetheless, this finding was in agreement with the pre-
viously reported promiscuous binding of RNA to the PRC2 complex
observed both in vitro [111] and in vivo [20,99–104]. Thus, the
MS2-LacI-mediated recruitment system is not only a well-suited
system to study protein-protein interactions [6,63] but can also
be used to study RNA-protein interactions in their cellular context.

4.4. Specific RNAs immobilized at the lacO array induce H3K27me3

The previous section shows that all RNAs tested induced an
enrichment of EZH2 immobilized at the lacO array. Next, we inves-
tigated whether the MS2-LacI-mediated recruitment system could
also be used to detect RNA-dependent changes on posttransla-
tional histone modifications. Having seen that lacO-enriched RNAs
can recruit EZH2 to the array, we investigated the presence of
H3K27me3, which is set by EZH2. To do so, the same experimental
setup as described above was used with an immunostaining direc-
ted against H3K27me3 instead of EZH2. Fig. 6 depicts that the RepA
transcript not only recruited EZH2, but also led to an enrichment of
the H3K27me3 mark at the array. However, the MS2 loop-tagged
oligonucleotide did not. Interestingly, the H3K27me3 inducing
activity was not observed to the same extent for the two RNAs
tested, although they both recruited EZH2. The MS2-LacI-
mediated recruitment system can thus be used to study the RNA-
dependent activity of chromatin modifiers that set epigenetic
marks like posttranslational histone modifications.

4.5. Specific RNAs immobilized at the lacO array induce their nucleolar
relocalization

The approach of tethering RNA to lacO/tetO arrays can be also
applied to evaluate the capacity of a given RNA sequence to medi-
ate the targeting of a locus to a specific nuclear subcompartment
(Fig. 1D). In the example shown here, the relative location of the
fluorescently-tagged array was evaluated in the presence and
absence of the MS2-RNA with respect to the nucleoli (Fig. 7). Here,
the U2OS F4 2B8 cell line with a lacO array at a single genomic
locus was used (Fig. 2D and I). First, we observed that the tethering
of Alu element-containing RNA transcripts induced the recruitment
of the nucleolar marker NCL (Fig. 7A) and NPM (Fig. 7B) to the
arrays. Furthermore, it was observed that in the presence of the
MS2-aluRNA at the array, the co-localization of the lacO array with
nucleoli was significantly increased as compared to recruiting no
RNA transcripts, an RNA containing only MS2 loops or other con-
trol RNA transcripts (Fig. 7 and Ref. [11]). Knowing that the lacO
array is a megabase long element, its relocalization is an intriguing
observation. It will be interesting to further decipher what type of
interactions involving RNA transcripts and their protein-binding
partners are driving such a rearrangement.
5. Concluding remarks

Here, we described several applications of the MS2-LacI system
as an exemplary case for investigating nuclear organization and
functions by tethering RNA to chromatin. While the microscopic
readout was limited to CLSM imaging, the method is compatible
with many other fluorescence microscopy-based techniques such
as single particle tracking, light sheet microscopy, super-
resolution microscopy, fluorescence correlation spectroscopy and
fluorescence recovery after photobleaching. For genomic targeting,
different interactions between bacterial high-affinity DNA-binding
sites (LacI-lacO, TetR-tetO, LexA-lexA, ParB-parS) have been used.
As described they all require the construction of dedicated cell
lines where binding site repeats are stably integrated into the gen-
ome. To conduct corresponding experiments with endogenous
sites, TALEs [65,66] or the CRISPR/dCas9 system [67,68] can be
applied. However, in practice the need for sufficient fluorescent
signal has restricted this type of application to studies of repetitive
sequences like (peri)centromeres and telomeres. Interestingly, the
CRISPR/dCas9 approach has also been adapted to recruit multiple
RNA-binding proteins to an RNA scaffold that comprised binding
sites for MS2-BPC or PP7 in 30-extended guide RNA extended
sequence [112]. Likewise, also the dCas9 protein can be fused to
a repeating peptide array termed the SunTag to recruit up to 24
copies of the GFP [113]. Thus, new approaches are emerging to
recruit specific RNA sequences to endogenous sites in conjunction
with amplification of the fluorescence signal. In this manner, imag-
ing of single protein molecules in living cells can be linked to teth-
ering of an RNA of interest to chromatin to evaluate how RNAs
affect genome functions on the single gene level.
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